
with examples in Nancy

Christian Horsdal Gammelgaard

SAMPLE CHAPTER

M A N N I N G

Microservices in .NET Core

by Christian Horsdal Gammelgaard

Chapter 7

Copyright 2017 Manning Publications

brief contents

PART 1 GETTING STARTED WITH MICROSERVICES1

1 ■ Microservices at a glance 3

2 ■ A basic shopping cart microservice 30

PART 2 BUILDING MICROSERVICES...55

3 ■ Identifying and scoping microservices 57

4 ■ Microservice collaboration 79

5 ■ Data ownership and data storage 109

6 ■ Designing for robustness 134

7 ■ Writing tests for microservices 155

PART 3 HANDLING CROSS-CUTTING CONCERNS: BUILDING

A REUSABLE MICROSERVICE PLATFORM183

8 ■ Introducing OWIN: writing and testing OWIN

middleware 185

9 ■ Cross-cutting concerns: monitoring and logging 199

v

vi BRIEF CONTENTS

10 ■	 Securing microservice-to-microservice

communication 223

11 ■	 Building a reusable microservice platform 248

PART 4 BUILDING APPLICATIONS ...271

12 ■	 Creating applications over microservices 273

Writing
 tests for microservices

This chapter covers
 Writing good automated tests

 Understanding the test pyramid and how it applies to
microservices

 Testing microservices from the outside

 Writing fast, in-process tests for endpoints

 Using Nancy.Testing for integration and unit tests

Up to this point, you’ve written a few microservices and set up collaborations
between some of them. The implementations are fine, but you haven’t written any
tests for them. As you write more and more microservices, developing systems with­
out good automated tests becomes unmanageable. In the first half of this chapter,
I’ll discuss what you need to test for each individual microservice. Then we’ll dive
into code, looking first at testing endpoints using the Nancy.Testing library, and
then at testing a complete microservice as if you were sending it requests from
another microservice.

155

156	 CHAPTER 7 Writing tests for microservices

7.1 What and how to test
In chapter 1, you saw three characteristics of a microservice that make it good for con­
tinuous delivery:

 Individually deployable—As soon as any small, safe change has been made to a
microservice, the microservice can be deployed to production. But how do you
know a change is safe? This is where testing and, particularly, test automation
come into the picture. Several other activities, like code reviews, static code
analysis, and designing public APIs for backward compatibility, also play into
determining that a change is safe, but testing is where much of your confidence
will come from.

 Replaceable—You should strive to be able to replace the implementation of a
microservice with another functionally equivalent implementation within the
normal pace of work. Again, tests play an important role, because a good set of
tests lets you assess whether the new implementation really is equivalent to the
old one.

 Maintainable by a small team—Microservices are sufficiently small and focused
that a team can maintain several of them. This has the advantage that you can
write tests that cover all parts of your microservices.

If you want to become confident about changes quickly and be able to replace a badly
implemented microservice, testing has to be fast and repeatable. To make testing fast
and repeatable, you must automate a significant part of it—and that’s the focus of this
chapter.

7.1.1 The test pyramid: what to test in a microservices system

The test pyramid shown in figure 7.1 is a tool you can use to guide which kinds of tests
you should write and how many you should have of each kind. You can find variations
of the test pyramid in different writings; all of them put tests on different levels, where
the levels at the top of the pyramid are broad in scope and the tests at the bottom are
narrow. The test pyramid illustrates that you should aim for having many narrowly
focused tests (the ones at the wide bottom of the pyramid) and only a few broadly
scoped tests (the ones at the narrow top).

System
tests

Service tests

Unit tests

Broader scope

Figure 7.1 The test pyramid
illustrates that you should have
a few system-level tests, many
service-level tests, and even

Faster more unit-level tests.

157 What and how to test

The version of the test pyramid that I use here has three levels:

 System tests (top level)—Tests that span the complete system of microservices and
are usually implemented through the GUI.

 Service tests (middle level)—Tests that work against one, but only one, complete
microservice.

 Unit tests (bottom level)—Tests that test one small piece of functionality in a
microservice. Unit tests call code in the microservice under test in-process and
usually involve only part of a microservice.

Note that when I use the term unit test, the word unit refers to a small piece of func­
tionality. I define the scope of a unit test not in terms of any particular code construct,
like a class or a method, but rather in terms of functionality. When we look at imple­
mentations of unit tests later, you’ll see that unit tests can easily span all layers of a
microservice: for example, from a Nancy module, through a domain object, down to a
data access class.

 Although the test pyramid tells you to have more tests as you move down the levels,
exactly how many tests you should have on each level is situational. It depends on such
factors as the size of the system, the complexity of the system, and the cost of failure.

7.1.2 System-level tests: testing a complete microservice system end-to-end

The tests at the top of the pyramid have a very broad scope and therefore cover a lot
of code with just a few tests. Because they have such a broad scope, they’re also impre­
cise. When a system-level test breaks, it isn’t immediately clear where the problem lies.
The test can potentially use the entire system, so the issue could be anywhere.

 An example of a system-level test is one that uses the web UI of the point-of-sale
system we talked about in earlier chapters to add a number of items to an invoice,
apply a discount code, and pay using a test credit card. If that test passes, it gives you
confidence that invoices are created, that discounts can be applied, and that you can
receive credit card payments. During such a system test, you might assert that the
amount due on the invoice is as expected. If that assertion fails, any number of
things could have caused the problem: you might be using the wrong price for one
or more items, you might have applied the discount incorrectly, or you might have
misinterpreted the invoice data. In other words, such a failure could be caused by at
least a handful of different microservices. To figure out which one is the culprit, you
need to investigate.

 The specific way a system-level test fails can give some hints as to where the prob­
lem lies, but there’s usually a lot of code that could be at fault. From the system test
alone, it won’t even be clear which microservice caused the failure. On the other
hand, when system-level tests pass, they give you a good deal of confidence.

 The second downside to system-level tests is that they tend to be slow. This again is
the flip side of them involving the complete system: real HTTP requests are made,
things are written to real data stores, and real event feeds are polled.

158 CHAPTER 7 Writing tests for microservices

 Considering that system-level tests, when successful, can give you good confidence,
but that they’re both slow and imprecise, my advice is to write system-level tests for the suc­
cess path of the most important use cases. This should give you coverage for the success
paths of all the most important parts of the system. You can, optionally, supplement
this with some tests for the most common and important failure scenarios. Exactly
how many system tests this amounts to is, as mentioned earlier, entirely situational.
This advice applies equally to microservices, traditional SOA, and monoliths. There’s
nothing microservice-specific about system-level tests. For this reason, I won’t show
implementations of any system-level tests in this chapter.

7.1.3 Service-level tests: testing a microservice from outside its process

The tests in the middle level of the test pyramid interact with one microservice as a
whole and in isolation—the collaborators of the microservice under test are replaced
with microservice mocks. Like system tests, these tests interact with the microservice under
test from the outside. But unlike system-level tests, they interact directly with the public
API of the microservice and make assertions about responses to the microservice as well
as the interactions the microservice has with other microservices: for instance, about
the commands the microservice under test sends to other microservices.

A microservice mock simulates a real microservice and records interactions
A microservice mock can be used in place of a real microservice in service-level tests.
It implements the same endpoints as the real microservice, but instead of using real
business logic to implement the endpoints, the mock has dumbed-down endpoint
implementations; usually endpoints in a mock return hardcoded responses. Further­
more, a mock often records the requests made to the endpoints, so the test code
can inspect the requests made during the test.

This is similar to the mock objects widely used in tests for object-oriented code. But
where mock objects replace a real object, a microservice mock replaces a real
microservice.

Like system-level tests, service-level tests test scenarios rather than single requests.
That is, they make a sequence of requests that together form a meaningful scenario.
The requests made from the microservice under test to its mocked collaborators are
real HTTP requests, and the responses are real HTTP responses.

 For examples, recall the Loyalty Program microservice from the example point-of­
sale system. In chapter 4, you saw that it collaborated with a number of other micro-
services, as shown in figure 7.2, using all three collaboration styles: events, queries,
and commands.

 To test Loyalty Program in isolation, you can create mock versions of its collaborators.
As shown in figure 7.3, when Loyalty Program interacts with a mocked collaborator, it
gets back a hardcoded response.

159 What and how to test

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 7.2 The Loyalty Program microservice collaborates with a number of other microservices
through all three types of collaboration: events, queries, and commands.

Loyalty Program
microservice

Mocked Special Offer
microservice

Poll for new events

Canned response containing
a hardcoded event

Figure 7.3 For service-level testing, the Loyalty Program microservice interacts with mocked versions
of its collaborators. The mocked microservices respond to requests with hardcoded responses.

A service-level test for the Loyalty Program microservice could do the following:

 Send a command to create a user
 Wait for the Loyalty Program microservice to query a mock Special Offer micro-

service for events, and get back a hardcoded event about a new special offer
 Record any commands sent to the Notifications microservice, and assert that a

command for a notification to the new user about the new special offer was sent

When a test like this passes, you can have confidence that important aspects of the
Loyalty Program microservice work. When it fails, you know that the problem is within
Loyalty Program itself.

 Service-level tests are much more precise than system-level tests, because they
cover only a single microservice: if such a test fails, the problem should lie within the
microservice under test, assuming the test setup itself isn’t buggy. Because microser­
vices are small—they’re replaceable, after all—knowing that a problem lies within a
certain microservice is a lot more precise than what you get from system-level tests.

160 CHAPTER 7 Writing tests for microservices

 On the other hand, service-level tests are still slow, because they interact with the
microservice under test over HTTP, because the microservice uses a real database, and
because it interacts with its mocked collaborators over HTTP.

Contract tests
As you know by now, there’s a lot of collaboration between microservices in a micro-
services system. You implement the collaborations as requests from one microservice
to another. If you aren’t careful, changes in an endpoint can break the microservices
that call that endpoint. This is where contract tests come into the picture.

When any two microservices in the system collaborate, the one making requests to the
other has some expectations about how the other microservice will behave. That is, given
a collaboration, the calling microservice expects the called microservice to implement
a certain contract. A contract test is a test with the purpose of determining whether the
called microservice implements the contract expected by the calling microservice.

Contract tests are written from the point of view of the caller and are there for the sake
of the calling microservice: as long as the contract test passes, the assumptions the
caller makes about the contract are still valid. Consequently, the contract tests are
part of the caller’s code base. They aren’t part of the same code base as the endpoints
they test. Contract tests shouldn’t have any knowledge of how the microservices they
test are implemented. This is where contract tests differ from service-level tests. With
service-level tests, you isolate the microservice under test by providing it with mocked
microservices in place of its collaborators. You don’t want to do that for contract tests,
because the contract tests shouldn’t know about the other collaborators of the micro-
service they test. In other words, contract tests run against the complete system.

Because contact tests are part of the code base of one microservice but test things
in other microservices, and because they run against the complete system, it can be
a good idea to run them against a QA or staging environment. Moreover, it’s a good
idea to have them run automatically every time the microservice under test is
deployed. When a contract breaks, it’s a strong indication that the collaboration
between the microservice the contract test belongs to and the microservice under
test is broken, too.

CI server environment Complete system

Contact test
Real HTTP request Microservice

under test
Other

microservices

A contract test runs against the complete system. It may, for instance, run against a staging or
QA environment, where the complete microservices system is deployed.

In terms of implementation, contract tests look a bit like the service-level tests you’ll
write later in this chapter. The difference is that contract tests are a slightly higher level
in the test pyramid, between system-level tests and service-level tests. Contract tests
don’t set up mocked collaborators, whereas service-level tests do; but just like service-
level tests, they work by making real HTTP requests to the microservice under test.

161 What and how to test

My recommendation regarding service-level tests is that you should write such tests for
the success versions of all functionality the microservice under test offers. Such tests
will naturally use all endpoints of the microservice as well as rely on any event sub­
scriptions in the microservice. In other words, they will cover all success paths in the
microservice. In general, I recommend writing service-level tests only for the most
important failure scenarios. Again, the number of service-level tests needed and how
many failure scenarios they should cover depends on the system and the cost of failure
in that particular system.

7.1.4 Unit-level tests: testing endpoints from within the process

The tests at the bottom of the test pyramid also deal with a single microservice, but
these tests don’t work over HTTP and don’t deal with the entire microservice. These
unit tests interact with the parts of the microservice under test directly and in mem­
ory. To call the endpoints implemented in your Nancy modules, you’ll use the
Nancy.Testing library that comes as a companion library alongside Nancy. Nancy.Test­
ing lets you write tests that make calls to Nancy endpoints in memory. The calls go
through Nancy in exactly the same way HTTP requests would, but without going
through the network stack. To the code in your Nancy modules, calls made with
Nancy.Testing look exactly like real HTTP requests.

 At the unit-test level, I’ll show you

two kinds of tests (see figure 7.4): one

that uses a database and one that uses a

mock in place of the database. I con­

Unit tests using a database

Unit tests using a mocked database

sider both to be unit tests, even though
the first type uses a database. Two things Figure 7.4 At the unit-test level, there are two

kinds of tests: those that use a database and thosemake a test a unit test: its scope is a
that don’t.

small piece of functionality, and the test

code and the production code in the microservice run in the same process.

 The narrow scope of a unit test makes it precise: when it fails, the problem lies in a
small amount of code. A narrow scope also enables you to write tests that cover failure
scenarios properly. Both types of unit tests are faster than service-level tests, but of
course the tests that mock out databases are faster than those that use a database.
Therefore, you can have both and will probably have more tests that mock the data­
base than tests that don’t.

 Sometimes you may also have even narrower unit tests that test the business logic in
the microservices directly by instantiating domain objects and testing them directly. I
take a pragmatic approach to deciding how narrow the narrowest unit tests should be:
I use a test-first workflow that starts from the outside, with tests that use Nancy.Testing
making calls to endpoint handlers in Nancy modules. I start with tests that cover the
broad strokes of what the endpoint should do, an then I progressively add tests for more
details. Only when it becomes awkward to test a particular detail through the endpoint
handler do I begin to write narrower unit tests. For instance, covering a particular case
in the business logic with tests that call through the endpoint handler might require a

162	 CHAPTER 7 Writing tests for microservices

lot of setup code. That’s a signal to switch down to a test that has a narrower scope: just
those cases in the business logic. I’ll write tests for those cases that work directly on the
classes that should implement that particular part of the business logic.

 For the Loyalty Program microservice, you need unit tests that test the endpoint
that lets you create users with a number of different inputs covering both possible
valid inputs and invalid inputs. Likewise, you need tests that try to read both existing
and nonexistent users from the query endpoint that lets you read users. You need sim­
ilar tests for the other endpoints in the microservice. Loyalty Program is sufficiently
simple that you don’t need to switch down to tests that are narrower than the micro­
service’s endpoints. So, the units tests I’ll show you later all work by calling endpoint
handlers through Nancy.Testing.

7.2 Testing libraries: Nancy.Testing and xUnit
In this chapter, you’ll use two new libraries:

 Nancy.Testing (https://github.com/NancyFx/Nancy/wiki/Testing-your­
application)

 xUnit (https://xunit.github.io/)

I’ll give you a brief introduction to each, and then you’ll implement tests for some of
the microservices you wrote in earlier chapters.

7.2.1 Meet Nancy.Testing

The Nancy.Testing library is a companion to Nancy that makes it easy to test endpoints
implemented in Nancy modules. The main entry point into Nancy.Testing is the
Browser type, which accepts method calls like Get("/"), Post("/user"),
Put("/user/42"), and Delete("/user/42") that let tests call GET, POST, PUT, and DELETE
endpoints in Nancy modules, respectively. When a test calls an endpoint through the
Browser type, the call goes through the real Nancy pipeline. This means routes are
resolved the same way as for real HTTP requests, the dependency injection container is
set up and used as usual, and serialization and deserialization run as they normally do.
In short, to the endpoint, the call looks exactly like a real HTTP request. The cool thing
is that it’s all done in process, so it’s much faster than a real HTTP request would be. The
return value of each method is a NancyResponse object and contains everything a real
HTTP response would, including headers, status codes, and a body.

 In addition to the Browser type, the Nancy.Testing library provides Configurable-
Bootstrapper, which offers a nice API for creating ad hoc bootstrappers used in tests.
Among other things, ConfigurableBootstrapper allows you to do the following:

 Create Browser objects that see only one Nancy module instead of all modules
in the application

 Override registrations in the dependency injection container: for instance, to
provide mock objects in place of real ones

 Add hooks to the Nancy pipeline, such as an error handler

https://github.com/NancyFx/Nancy/wiki/Testing-your-application
https://github.com/NancyFx/Nancy/wiki/Testing-your-application
https://xunit.github.io/

163 Testing libraries: Nancy.Testing and xUnit

Finally, Nancy.Testing comes with a bunch of convenience methods that make writing
assertions against NancyResponse objects easy.

 Nancy.Testing offers a wealth of functionality that makes it easier to write tests.
Going through all of it is beyond the scope of this chapter, but you’ll see some of its
power. I find the APIs in the library to be quite discoverable, so I’m sure once you get
going, you’ll discover more of what Nancy.Testing has to offer.

 You can find further information on Nancy.Testing in the Nancy documentation
(https://github.com/NancyFx/Nancy/wiki/Testing-your-application), or you can
jump right in and start using it. I think you’ll find that the APIs are quite discoverable
through IntelliSense.

7.2.2 Meet xUnit

xUnit (http://xunit.github.io) is a unit-test tool for .NET. It has a library part that
allows you to write automated tests and a runner part that can run those tests. To write
a test with xUnit, you create a method with a Fact attribute over it and put the code to
perform the test there. The xUnit runner scans for methods with a Fact attribute and
executes all of them. In addition, xUnit has an API for making assertions in tests. If an
assertion fails, the xUnit runner picks up the failure and reports it back when it’s fin­
ished running tests. The xUnit test runner can be run by dotnet and is therefore well
suited for the projects you’re building in this book.

 Other .NET test tools similar to xUnit—NUnit, for instance—are available that you
can also use. This book sticks with xUnit because it’s used for the test projects that Yeo­
man and Visual Studio create. If you prefer another tool, feel free to use it, as long as
it works with dotnet.

7.2.3 xUnit and Nancy.Testing working together

Putting Nancy.Testing and xUnit together, you can write succinct tests for endpoints
implemented in Nancy modules. In section 7.3.1, you’ll set up a project for these unit
tests and run them with dotnet; but for now, I just want to give you a quick peek at
how the tests will look. The following test calls the Get endpoint in TestModule and
makes the assertion that the response status code is 200 OK.

Listing 7.1 Simple test using xUnit and Nancy.Testing

namespace LoyaltyProgramUnitTests

{

using Nancy;

using Nancy.Testing;

using Xunit;

public class TestModule_should

{

public class TestModule : NancyModule

{

http://xunit.github.io
https://github.com/NancyFx/Nancy/wiki/Testing-your-application

164	 CHAPTER 7 Writing tests for microservices

public TestModule()

{

Get("/", _ => 200;)
 Endpoint used in the test
}

}

Configures a [Fact]

Nancy public async Task respond_ok_to_request_to_root()

bootstrapper {

with TestModule var sut = new Browser(with => with.Module<TestModule>());

var actual = await sut.Get("/");

Assert.Equal(HttpStatusCode.OK, actual.StatusCode);
 Asserts that the

}
endpoint returns a Calls the Get endpoint}
200 OK response in TestModule }

Naming conventions
My tests follow these naming conventions:

 My tests work on an object called sut for system under test. In the previous
test, sut is a Browser object that I use to make a call to an endpoint.

 I name my test classes after the thing they test—TestModule in this example
test—followed by _should.

 I name the Fact method after the scenario being tested and the expected
result. I separate the words in Fact method names with underscores and try
to make sure they form a sentence when combined with the name of the sur­
rounding class. For instance, in this test, concatenating the class name and
the Fact method name and replacing underscores with spaces, you get
“TestModule should respond ok to requests to root.”

Whether you like these conventions is a matter of taste. I happen to like them, but
they’re in no way essential to writing good tests.

You can run the previous test with dotnet; it will execute in-memory and give you
good coverage because the call to sut.Get("/") executes the real Nancy pipeline,
including the implementation of the endpoint in TestModule. The string argument
"/" is the relative URL to which the fake request is made. In section 7.3.1, we’ll look at
setting up a project for these unit tests and how to run them with dotnet.

 For the rest of this chapter, we’ll work at the code level and implement unit tests
and service-level tests for the Loyalty Program microservice. When you implemented
Loyalty Program in chapter 4, it didn’t have an event feed; but for these examples
you’ll add an event feed that other microservices can subscribe to.

7.3 Writing unit tests using Nancy.Testing
In this section, you’ll implement some unit tests for the endpoints in the Loyalty Pro­
gram microservice. In chapter 4, you saw that Loyalty Program has three command
and query endpoints:

http:Assert.Equal(HttpStatusCode.OK

165 Writing unit tests using Nancy.Testing

 An HTTP GET endpoint at URLs of the form /users/{userId} that responds with a
representation of the user

 An HTTP POST endpoint to /users/ that expects a representation of a user in
the body of the request and then registers that user in the loyalty program

 An HTTP PUT endpoint at URLs of the form /users/{userId} that expects a rep­
resentation of a user in the body of the request and then updates an already-
registered user

Let’s write tests for these endpoints. The Loyalty Program microservice has an event
feed for which you’ll also write a test. You won’t write comprehensive tests for the end­
points and event feed in Loyalty Program—only enough to see how tests against
Nancy endpoints are written.

 In the following subsections, you’ll do the following:

 Set up a test project to house unit tests for the Loyalty Program microservice.
 Write tests that use Browser from Nancy.Testing to test endpoints in Loyalty

Program and that let the code in the microservice use the real database. You’ll
write three such tests, one for each of these pieces of functionality:
–	 A test that tries to read a user that doesn’t exist
–	 A test that creates a user and reads it back out
–	 A test that modifies a user and reads it back out

 Write tests that also use Browser to test an endpoint but are limited in scope by
a mocked database injected in the endpoint under test. These tests test the
event feed in the microservice.

When you’re finished, you’ll have learned to write unit tests for Nancy endpoints both
with and without a real database.

7.3.1 Setting up a unit-test project

Before you can start writing tests, you need a project to house them. For that, create a
new project next to the LoyaltyProgram project, and call it LoyaltyProgramUnit-
Tests. If you create the project with Visual Studio, choose the Class Library (.NET
Core) template from the dialog; and if you use you Yeoman, choose Unit Test Project
(xUnit.net) from the menu.

 Your solution should look similar to this:

C:.

LoyaltyProgram

Bootstrapper.cs

project.json

README.md

Startup.cs

UsersModule.cs

YamlSerializerDeserializer.cs

LoyaltyProgram

http:YamlSerializerDeserializer.cs
http:UsersModule.cs
http:Startup.cs
http:README.md
http:Bootstrapper.cs
http:xUnit.net

166 CHAPTER 7 Writing tests for microservices

EventFeed

Event.cs

EventsFeedModule.cs

EventStore.cs

IEventStore.cs

LoyaltyProgramEventConsumer

Program.cs

project.json

LoyaltyProgramUnitTests

project.json

Class1.cs

If you used Yeoman to create the new LoyaltyProgramUnitTests project, you’re
ready to run your first tests. But if you used the Visual Studio template, you need to
edit the Class1.cs and project.json files a bit. The following listing shows how Class1.cs
should look.

Listing 7.2 Class1.cs file

using Xunit;

namespace UnitTest

{

// see example explanation on xUnit.net website:

// https://xunit.github.io/docs/getting-started-dotnet-core.html

public class Class1

{

[Fact]

public void PassingTest()

{

Assert.Equal(4, Add(2, 2));

}

[Fact]

public void FailingTest()

{

Assert.Equal(5, Add(2, 2));

}

int Add(int x, int y)

{

return x + y;

}

}

}

In the project.json file, add the following to set up a test command that refers to the
xunit test runner:

"testRunner": "xunit",

https://xunit.github.io/docs/getting-started-dotnet-core.html
http:xUnit.net
http:Class1.cs
http:Class1.cs
http:Class1.cs
http:Program.cs
http:IEventStore.cs
http:EventStore.cs
http:EventsFeedModule.cs
http:Event.cs

Writing unit tests using Nancy.Testing 167

The xunit test runner is added to the project via the NuGet package dotnet-test­
xunit, and the xUnit package is installed. Here are all the dependencies:

"dependencies": {

"dotnet-test-xunit": "2.2.0-preview2-build1029",

"Microsoft.NETCore.App": {

"version": "1.0.0",

"type": "platform"

},

"xunit": "2.1.0"

},

You can now go to the LoyaltyProgramUnitTests folder in PowerShell and restore the
NuGet packages as usual, using dotnet:

PS> dotnet restore

The Class1.cs file now contains two small xUnit tests: one that passes and one that
fails. You run them with dotnet like this:

PS> dotnet test

Once you have the initial tests running, add a dependency on Nancy.Testing so you
can use Browser and later ConfigurableBootstrapper. Also add a dependency on
LoyaltyProgram so you can begin testing it. The dependencies now look like this:

"dependencies": {

"dotnet-test-xunit": "2.2.0-preview2-build1029",

"Microsoft.NETCore.App": {

"version": "1.0.0",

"type": "platform"

},

"xunit": "2.1.0",

"Nancy.Testing": "2.0.0--barneyrubble",

"LoyaltyProgram": {"target": "project"}
 Project reference

},

The last line is the reference to the LoyaltyProgram project. As you can see, the pro­
ject references in project.json look almost like NuGet references. You don’t specify a
version for LoyaltyProgram because you want the test to run against the version of the
LoyaltyProgram code that you have next to the LoyaltyProgramUnitTests project.

7.3.2 Using the Browser object to unit-test endpoints

Now that you have a test project set up, you can begin adding tests to it. The first test
you’ll add is very simple: given that there are no registered users in the Loyalty Pro­
gram microservice, the test queries for a user and expects to get back a response with
a 404 Not Found status code. Add a file called userModule_should.cs to the Loyalty-
ProgramUnitTests project, and put the following code in it.

http:userModule_should.cs
http:Class1.cs

168 CHAPTER 7 Writing tests for microservices

Listing 7.3 First test for the users endpoint

namespace LoyaltyProgramUnitTests

{

using LoyaltyProgram;

using Nancy;

using Nancy.Testing;

using Xunit;

public class UserModule_should

{

private Browser sut;

public UserModule_should()

{

this.sut = new Browser(

new Bootstrapper(),

Remember that sut stands
for “system under test.”

Real LoyaltyProgram
bootstrapper

defaultsTo => defaultsTo.Accept("application/json"));
 All “requests”
}
 accept JSON

[Fact]

public void respond_not_found_when_queried_for_unregistered_user()

{

var actual = await sut.Get("/users/1000");
Assert.Equal(HttpStatusCode.NotFound, actual.StatusCode);

}
} Requests a user that

} doesn’t exist

The most interesting part of this test class is in the constructor, where you create a
Browser object. When xUnit runs, it creates an instance of UserModule_should and
then calls a method with the Fact attribute on that instance. Unlike most other .NET
test frameworks, xUnit create a new, clean instance for each Fact method.

 The Browser object in listing 7.3 is initialized with the real bootstrapper from Loy­
altyProgram. This means the LoyaltyProgram application that the Browser calls into
is wired up exactly the same way it is when it runs on top of a real web server and
receives real HTTP requests. Furthermore, for convenience, you set a default Accept
header on Browser. This header will be added to all requests made through the
Browser object unless explicitly overridden. For instance, sut.Get("/users/1000")
has the Accept header set.

 Let’s move on to a test that registers a new user and then queries it to check that it
was registered as it should be. Add the following test to the UserModule_should class.

Listing 7.4 Test for registering a user through the users endpoint

[Fact]

public void allow_to_register_new_user()

{

var expected =

new LoyaltyProgramUser() { Name = "Chr" };

169 Writing unit tests using Nancy.Testing

Reads the new
user from the

body of the
response from

the POST

Registers a new user
through the POST endpoint

var registrationResponse = await

sut.Post("/users", with => with.JsonBody(expected));

var newUser =

registrationResponse.Body.DeserializeJson<LoyaltyProgramUser>();

var actual = await sut.Get($"/users/{newUser.Id}");
 Reads the

new user

Assert.Equal(HttpStatusCode.OK, actual.StatusCode);
 through the
Assert.Equal(
GET endpoint

expected.Name,

actual.Body.DeserializeJson<LoyaltyProgramUser>().Name);

// more assertions on the response from the GET

}
 Checks that the response

from the GET is correct

Here, you see another use of the Browser object. For instance, you add a body to the
Post via the lambda in the second argument. In that lambda, you can do a variety of
things to the request, such as adding headers, cookies, form values, a host name, or an
identity, or choosing between HTTP and HTTPS. Here, you add a body to the request.

 The last test you’ll add registers a user and then modifies it via the PUT endpoint in
the Loyalty Program microservice. Add it to UserModule_should.cs.

Listing 7.5 Test for modifying users through the users endpoint

[Fact]

public void allow_modifying_users()

{

var expected = "jane";

var user = new LoyaltyProgramUser() { Name = "Chr" };

var registrationResponse = await

sut.Post("/users", with => with.JsonBody(user));
 Registers a user

var newUser =

registrationResponse.Body.DeserializeJson<LoyaltyProgramUser>();

newUser.Name = expected;
 Updates the user
var actual = await

sut.Put($"/users/{newUser.Id}", with => with.JsonBody(newUser));

Assert.Equal(
 Asserts that the update was done
expected,

actual.Body.DeserializeJson<LoyaltyProgramUser>().Name);

}

There’s nothing new in this code compared to what you’ve seen in the two previous tests.
But I wanted to include it because it’s a good illustration of the kind of unit tests I think
you should write for the endpoints in your microservices: unit tests that focus on the
behavior the endpoints provide rather than on testing just one endpoint in isolation.

http:sut.Put($"/users/{newUser.Id
http:UserModule_should.cs
http:Assert.Equal(HttpStatusCode.OK
http:sut.Get($"/users/{newUser.Id

170 CHAPTER 7 Writing tests for microservices

7.3.3 Using a configurable bootstrapper to inject mocks into endpoints

Now that you’ve tested the endpoints in UserModule, let’s turn to testing the Loyalty-
Program event feed. The event feed is a Nancy module that depends on an IEvent-
Store to store and read events. Here’s the IEventStore interface.

Listing 7.6 IEventStore interface

using System.Collections.Generic;

namespace LoyaltyProgram.EventFeed

{

public interface IEventStore

{

IEnumerable<Event> GetEvents(

long firstEventSequenceNumber,

long lastEventSequenceNumber);

void Raise(string eventName, object content);

}

}

Reads events from
the event store

Stores events to
the event store

You saw an event feed in chapter 4, but I’ll repeat it here, to remind you how it works.

Listing 7.7 Event feed

namespace LoyaltyProgram.EventFeed

{

using Nancy;

public class EventsFeedModule : NancyModule

{

public EventsFeedModule(IEventStore eventStore) : base("/events")

{

Gets theGet("/", _ =>

start value{

from thelong firstEventSequenceNumber, lastEventSequenceNumber;

query stringif (!long.TryParse(this.Request.Query.start.Value,

out firstEventSequenceNumber))

firstEventSequenceNumber = 0;

if (!long.TryParse(this.Request.Query.end.Value,
 Gets the end value
out lastEventSequenceNumber))
 from the query string
lastEventSequenceNumber = 50;

return

eventStore.GetEvents(Reads events “start”

firstEventSequenceNumber,
lastEventSequenceNumber);

through “end” from
the event store

});
}

}
}

171 Writing unit tests using Nancy.Testing

As you can see, the event feed is a Nancy module that responds to requests to /events
with the events it reads from IEventStore. You want to write a test to check whether
the event feed returns exactly the event from the IEventFeed. Toward that end, you
want to control which events IEventStore returns. So, you’ll create a fake implemen­
tation of IEventStore and use that in the test.

Listing 7.8 Fake IEventStore to use in tests

public class FakeEventStore : IEventStore

{

public IEnumerable<Event> GetEvents(

long firstEventSequenceNumber,

long lastEventSequenceNumber)

{

if (firstEventSequenceNumber > 100)

return Enumerable.Empty<Event>();
 Returns a list of fake events when
firstEventSequenceNumber is less
than 100

else

return

Enumerable

.Range((int) firstEventSequenceNumber,

(int) (lastEventSequenceNumber - firstEventSequenceNumber))

.Select(i =>

new Event(

i,

DateTimeOffset.Now,

"some event",

new Object()));

}

public void Raise(string eventName, object content) {}

}

With this fake implementation of an event store, you know the event store
will return a list of events only if the firstEventSequenceNumber argument is less
than 100. Otherwise, FakeEventStore will return an empty list of events. If you inject
this IEventStore implementation into EventsFeedModule, you’ll know which
events EventsFeedModule will get from the event store and therefore which events it
should return.

 You can use another feature of Nancy.Testing to inject the fake IEventStore
implementation into EventsFeedModule: ConfigurableBootstrapper, which allows
you to modify how the Nancy application under test is configured. Here, you’ll use
ConfigurableBootstrapper to set up FakeEventStore as the implementation of
IEventStore when creating the Browser object. That is done with the following piece
of code.

172	 CHAPTER 7 Writing tests for microservices

Listing 7.9 Using the fake event store while testing

with has the type
this.sut = new Browser(

with => with

ConfigurableBootstrapper Limits Browser to using
EventsFeedModule only

.Module<EventsFeedModule>()

.Dependency<IEventStore>(typeof(FakeEventStore)),

withDefault => withDefault.Accept("application/json"));
 Adds a JSON

Accept headerRegisters FakeEventStore as the
to all requestsimplementation of IEventStore

With this code in the tests, constructor instances of EventsFeedModule will have
FakeEventStore injected. You can use that to write two tests:

 A test that asserts that events are returned from the feed when the start number
in the request is less than 100

 A test that asserts that no events are returned when the start number is greater
than 100

Listing 7.10 Tests for the event feed, using the fake event store

using System;

using System.Collections.Generic;

using System.Linq;

using LoyaltyProgram.EventFeed;

using Nancy;

using Nancy.Testing;

using Xunit;

public class EventFeed_should

{

private Browser sut;

public EventFeed_should()

Creates Browser configured{

to use FakeEventStore

this.sut = new Browser(

with => with

.Module<EventsFeedModule>()

.Dependency<IEventStore>(typeof(FakeEventStore)),

withDefault => withDefault.Accept("application/json"));

}

[Fact]

public void return_events_when_from_event_store()

{

var actual = await sut.Get("/events/", with =>
 Makes a request to /events
{
 with the query string

with.Query("start", "0");
 “start=0&end=100”
with.Query("end", "100");

});

173 Writing service-level tests

Assert.Equal(HttpStatusCode.OK, actual.StatusCode);

Assert.StartsWith("application/json", actual.ContentType);

Assert.Equal(100,

actual.Body.DeserializeJson<IEnumerable<Event>>().Count());

}

[Fact]

public void return_empty_response_when_there_are_no_more_events()

{

var actual = wait sut.Get("/events/", with =>
 Makes a request to /events
{
 with the query string

with.Query("start", "200");
 “start=200&end=300”
with.Query("end", "300");

});

Assert.Empty(actual.Body.DeserializeJson<IEnumerable<Event>>());

}

}

Now that you have some unit tests in place, you can run them with dotnet, as you saw
earlier. When you do, xUnit will scan for classes with Fact methods and then execute
each Fact method. The output from the tests shows a summary of how many tests ran,
how many errors there were, how many tests failed, and how many were skipped:

PS > dotnet test

xUnit.net .NET CLI test runner (64-bit .NET Core win10-x64)

Discovering: LoyaltyProgramUnitTests

Discovered: LoyaltyProgramUnitTests

Starting: LoyaltyProgramUnitTests

Finished: LoyaltyProgramUnitTests

=== TEST EXECUTION SUMMARY ===

LoyaltyProgramUnitTests Total: 6, Errors: 0, Failed: 0, Skipped: 0, Time:

2.375s

SUMMARY: Total: 1 targets, Passed: 1, Failed: 0.

As you can see, six tests were run, and none of them failed. In other words, all tests
passed.

 Now that you have tests for EventsFeedModule and UsersModule, you’re off to a
good start writing unit tests for endpoints in your microservices. In real life, these tests
aren’t sufficient; I’d write more tests for edge cases and error scenarios. But now you
know how to write those tests using Nancy.Testing.

7.4 Writing service-level tests
Let’s move on to writing service-level tests for the entire Loyalty Program microser­
vice. Service-level tests interact with a microservice from the outside and provide the
microservice with mocked versions of its collaborators.

 Loyalty Program makes requests to two collaborators: the event feed in the Special
Offers microservice and the API of the Notifications microservice. The service-level
tests for Loyalty Program go through these steps:

http:xUnit.net
http:Assert.Equal(HttpStatusCode.OK

174	 CHAPTER 7 Writing tests for microservices

1	 Set up two endpoints in the same process as the test:
–	 One that works as a mocked special-offer event feed
–	 One that works as a mocked notification endpoint

2	 Start the Loyalty Program microservice in separate processes, and configure it
to use the mocked endpoints in place of the real collaborators. This means
whenever Loyalty Program needs to call one of its collaborators, it will call one
of the mocked endpoints.

3 Execute a scenario against Loyalty Program as a sequence of HTTP requests.

4 Record any calls to the mocked endpoints.

5 Make assertions on the responses from Loyalty Program and on the requests

made to the mocked endpoints.

Figure 7.5 shows the runtime setup for the service-level tests for the Loyalty Program
microservice.

 You’ll follow these steps to create the test setup from figure 7.5:

1 Create a test project for the service-level tests.

2	 Create the mocked endpoints for the special-offers event feed and the notifica­

tion endpoint.
3 Start both processes of the Loyalty Program microservice: the Nancy applica­

tion containing the HTTP API and the event consumer.
4 Write test code that executes a test scenario against Loyalty Program.

When that setup is in place, you’ll write a test that uses it.

Service-level test process

Real HTTP request

Real HTTP request

Real HTTP request

Mocked Notifications
microservice

Integration
test scenario

Loyalty Program
microservice

Mocked Special Offer
microservice

Figure 7.5 A service-level test executes a scenario against the API of the microservice under test but
configures the microservice to use mocked endpoints running in the same process as the test, in place
of real collaborators. When a service-level test runs, it makes real HTTP requests to the microservice
under test, which makes real HTTP requests back to mocked endpoints as needed. The test can inspect
the responses from the microservice under test as well as the calls it makes to the mocked endpoints.

---- ------------- ------ ----

175 Writing service-level tests

7.4.1 Creating a service-level test project

For the service-level tests, you’ll create a new test project exactly like the unit-test project
you create earlier. That is, create a project based on either the ASP.NET Test Project
Template in Visual Studio or the Unit Test project template in Yeoman, and call it
LoyaltyProgramIntegrationTest. Just like the unit-test project, place this new project
side by side with LoyaltyProgram. You now have four projects:

Mode LastWriteTime Length Name

d----- 4/6/2016 8:53 PM LoyaltyProgram

d----- 4/6/2016 8:53 PM LoyaltyProgramEventConsumer

d----- 4/6/2016 8:53 PM LoyaltyProgramIntegrationTest

d----- 8/6/2016 10:59 PM LoyaltyProgramUnitTests

These are the two projects that make up the Loyalty Program microservice—the
Nancy application and the event consumer—and the test projects that go along with
the microservice.

7.4.2 Creating mocked endpoints

As shown in figure 7.5, you need to create mocked versions of the endpoints in the
Special Offers microservice and the Notifications microservice that the Loyalty Pro­
gram microservice uses. You’ll do so by writing two simple Nancy modules, each of
which implements an endpoint that returns a hardcoded response. Listing 7.11 shows
the mocked special-offers event feed endpoint, and listing 7.12 shows the mocked
notifications endpoint.

Listing 7.11 Mock event feed returning hardcoded events

public class MockEventFeed : NancyModule

{

public static AutoResetEvent polled =

new AutoResetEvent(initialState: false);

public MockEventFeed()

{

this.Get("/events", _ =>

{

polled.Set();

return new []

{

new

{

SequenceNumber = 1,

Name= "baz",

Content = new

{

Signals to the test that
Loyalty Program has
been polled for events

Returns a hardcoded
response

176 CHAPTER 7 Writing tests for microservices

OfferName = "foo",
Description = "bar",
item = new { ProductName = "name" }

}
}

};
});

}
}

Listing 7.12 Mock endpoint that records when it was called

public class MockNotifications : NancyModule

{

public static AutoResetEvent notificationWasSent =

new AutoResetEvent(initialState: false);
 Used later in

the test to make
public MockNotifications()
 assertions on
{
this.Get("/notify", _ =>
{

notificationWasSent.Set();
return 200; Returns a hardcoded

}
}); response

}

The plan is to run these two modules in the test process. To do that, you’ll use Nancy
on top of ASP.NET Core like you usually do. You need to add the Microsoft.AspNet-
Core.Owin NuGet packages and add Nancy and LoyaltyProgram as dependencies.
The dependencies section in the project.json file now looks like this.

Listing 7.13 Integration project dependencies, including Nancy

"dependencies": {

"dotnet-test-xunit": "2.2.0-preview2-build1029",

"Microsoft.NETCore.App": {

"version": "1.0.0",

"type": "platform"

},

"xunit": "2.1.0",

"Microsoft.AspNetCore.Owin": "1.0.0",

"Nancy": "2.0.0-barneyrubble",

"LoyaltyProgram": { "target": "project" }

},

Next, add a file called RegisterUserAndGetNotification.cs containing the following
code, which uses Nancy.Hosting.Self to start a Nancy application in the test process.

http:RegisterUserAndGetNotification.cs

177 Writing service-level tests

Listing 7.14 Starting up Nancy inside the test process

Uses FakeStartup
to bootstrap the

ASP.NET Core
application

public class RegisterUserAndGetNotification : IDisposable

{

private readonly NancyHost hostForMockEndpoints;

public RegisterUserAndGetNotification()

{

StartFakeEndpoints();

}

Creates an ASP.NET

Core application
private void StartFakeEndpoints()

{

this.hostForFakeEndpoints = new WebHostBuilder()

.UseKestrel()

.UseContentRoot(Directory.GetCurrentDirectory())

.UseStartup<FakeStartup>()
 Lets the ASP.NET

.UseUrls("http://localhost:5001")
 Core application

.Build();
 listen on port 5001

new Thread(() => this.hostForFakeEndpoints.Run()).Start();

}

}

public class FakeStartup

{
 Adds

Nancy to thepublic void Configure(IApplicationBuilder app)

ASP.NET Core{

applicationapp.UseOwin(buildFunc => buildFunc.UseNancy());

}

}

Later, you’ll add a Fact method to this class: then, when you run xUnit, it will find this
class and instantiate it to execute Fact. The constructor starts up Nancy, which will
automatically discover the MockEventsFeed and MockUsersModule modules and
expose the endpoints defined in them. This is all you need to create mocked end­
points in the service-level test process.

7.4.3 Starting all the processes of the microservice under test

With the mocked endpoints running, you’re ready to start up Loyalty Program. The
microservice consists of two processes: a Nancy application and the event consumer.
You add the code to start those to the setup in RegisterUserAndGetNotification. The
following listing shows only new code—leave the existing code to start and stop Nancy.

Listing 7.15 Starting the microservice in a separate process

public class RegisterUserAndGetNotification : IDisposable

{

...

private Process eventConsumer;

178	 CHAPTER 7 Writing tests for microservices

private Process web;

public RegisterUserAndGetNotification()

{

StartLoyaltyProgram();

...

}

private void StartLoyaltyProgram()

{

StartEventConsumer();

StartLoyaltyProgramApi();

}

Setup for running the
command “dotnet run”
in the LoyaltyProgram

private void StartLoyaltyProgramApi()

{

foldervar apiInfo = new ProcessStartInfo("dotnet.exe")

{

Arguments = "run",

WorkingDirectory = "../LoyaltyProgram"

Starts the};

LoyaltyProgram processthis.api = Process.Start(apiInfo);

}

Setup for runningprivate void StartEventConsumer()
 the event consumer
{

var eventConsumerInfo = new ProcessStartInfo("dotnet.exe")

{

Arguments = "run localhost:5001",

WorkingDirectory = "../LoyaltyProgramEventConsumer"

Starts the event­};

consumer processthis.eventConsumer = Process.Start(eventConsumerInfo);

}

public void Dispose()
 Closes the processes,
{
 and releases resources
this.eventConsumer.Dispose();

this.api.Dispose();

}

}

This code spawns two dotnet processes, one for each process in the Loyalty Program
microservice. This is like running dotnet from the command line, so running the
Nancy application is the same as usual. Running the event consumer is different, and
you need to solve these two problems:

 The event consumer expects to run as a Windows service. Now it also needs to
be able to run like a simple process.

 In the following line from listing 7.15, the event consumer doesn’t understand the
command-line argument localhost:5001, which is the host name for the mocked
endpoints you want the event consumer to use in place of the real collaborators:

Arguments = "run localhost:5001",

179 Writing service-level tests

Both of these issues are easy to solve. You just change the Main method in the event
consumer to the following.

Listing 7.16 Letting the consumer run as a Windows or normal process

Reads the host name from the
command-line argument

public static void Main(string[] args) => new Program().Entry(args);

public void Entry(string[] args)

{

this.subscriber = new EventSubscriber(args[0]);

if (args.Length >= 2 && args[1].Equals("--service"))

Run(this);
 Runs as a service if

there’s a --serviceelse

in the command­{

line argumentsOnStart(null);
 Runs the start

Console.ReadLine();
 method by hand
}

}

Now both processes of the Loyalty Program microservice are started from the test
startup code. A nice side effect of the changes to the event consumer is that it’s also
easier to run by hand for testing reasons.

7.4.4 Executing the test scenario against the microservice under test

Finally, you’re ready to write the test. It has three steps:

1 Make an HTTP request to register a user.

2 Wait for the Loyalty Program microservice to poll for events.

3 Assert that a request to the notifications endpoint was made.

In code, the test goes in the RegisterUserAndGetNotification file and is as follows.

Listing 7.17 Service-level test using an outside loyalty program

[Fact]

public void Scenario()

{

RegisterNewUser();

WaitForConsumerToReadSpecialOffersEvents();

AssertNotificationWassent();

}

private async Task RegisterNewUser()

{

using (var httpClient = new HttpClient())

{

httpClient.BaseAddress = new Uri("http://localhost:5000");

var response = await

180	 CHAPTER 7 Writing tests for microservices

Sends a request to
register a user

httpClient.PostAsync(

Puts a user into"/users/",

the request
new StringContent(

JsonConvert.SerializeObject(new LoyaltyProgramUser()),

Encoding.UTF8,

"application/json")).ConfigureAwait(false);

Assert.Equal(HttpStatusCode.Created, response.StatusCode);

Console.WriteLine("registered users");

Waits for the microservice to}
 poll the event feed, and fails if
}
 it doesn’t poll

private static void WaitForConsumerToReadSpecialOffersEvents()

{

Assert.True(MockEventFeed.polled.WaitOne(30000));

Thread.Sleep(100);

}
 Waits to give the
microservice time
to handle the eventprivate static void AssertNotificationWassent()

from the feed{

Assert.True(MockNotifications.NotificationWasSent);

}

You can run the test in PowerShell with dotnet:

PS> dotnet test

This will open two command windows: one with each of the processes in the Loyalty
Program microservice. The test runs, and, when it finishes, the two windows are
closed. The output from xUnit is as follows:

Discovering: LoyaltyProgramIntegrationTest

Discovered: LoyaltyProgramIntegrationTest

Starting: LoyaltyProgramIntegrationTest

LoyaltyProgramIntegrationTests.RegisterUserAndGetNotification.Scenario

Finished: LoyaltyProgramIntegrationTest

=== TEST EXECUTION SUMMARY ===

LoyaltyProgramIntegrationTest Total: 1, Errors: 0, Failed: 0, Skipped:

 ➥ 0, Time: 12.563s

This test is slow, and you had to do some setup before you were ready to write it. This
is why such tests are higher on the test pyramid than the unit tests you wrote earlier.
You should have only a few of this kind of test, whereas you can have many unit tests.

7.5 Summary
 The test pyramid tells you to have few system-level tests that test the complete

system, several service-level tests for each microservice, and many unit tests for
each microservice.

 System-level tests are likely to be slow and are very imprecise.

Summary	 181

 You should write system-level tests for important success scenarios, to provide
some test coverage for most of the system.

 Service-level tests are likely to be slow, but they’re faster and more precise than
system-level tests.

 You should write service-level tests for success scenarios and important failure
scenarios for each microservice. This adds more test coverage to each microser­
vice than just the system-level tests.

 You can use the process for writing service-level tests as the basis for writing con­
tract tests that verify the assumption one microservice makes about the API and
behavior of another microservice. In terms of the test pyramid, contract tests
are between system-level tests and service-level tests.

 Unit tests are fast and should be kept fast. They’re also precise, because they tar­
get a specific, narrow piece of functionality.

 You should write unit tests for success and failure scenarios alike. Use them to
cover edge cases that are harder to cover with higher-level tests.

 I recommend working in an outside-in fashion with each microservice: write
service-level tests first, and then begin writing unit tests when the service-level
tests become awkward to work with.

 The Nancy.Testing library is a powerful companion to Nancy that makes it easy
to test endpoints in Nancy modules.

 You use the Browser type in Nancy.Testing to test endpoints through a nice API
that lets you simulate HTTP requests. Calls through the Browser object look
exactly like real HTTP requests to the endpoint handlers in Nancy modules.

 You test endpoints through Browser both with real data stores and with mocked
data stores.

 You can write service-level tests where you do the following:
–	 Write mocked endpoints for the collaborators of the microservice under test,

and use Nancy to host these in the test process.
–	 Start up all the processes of the microservice under test, passing in the con­

figuration through command-line arguments.
–	 Write scenarios that interact with the microservice under test via HTTP

requests.
–	 Make assertions both on the response from the microservice under test and

on the requests it makes to its collaborators.
 You can use the xUnit test framework to write and run your automated tests.
 xUnit can be run with dotnet.

MICROSOFT.NET/MICROSERVICES

Microservices in .NET Core

Christian Horsdal Gammelgaard

M
icroservice applications are built by connecting single-
capability, autonomous components that communicate
via APIs. These systems can be challenging to develop

because they demand clearly defined interfaces and reliable
infrastructure. Fortunately for .NET developers, OWIN (the
Open Web Interface for .NET), and the Nancy web frame­
work help minimize plumbing code and simplify the task of
building microservice-based applications.

Microservices in .NET Core provides a complete guide to build­
ing microservice applications. After a crystal-clear introduc­
tion to the microservices architectural style, the book will
teach you practical development skills in that style, using
OWIN and Nancy. You’ll design and build individual services
in C# and learn how to compose them into a simple but
functional application back end. Along the way, you’ll
address production and operations concerns like monitoring,
logging, and security.

What’s Inside
● Design robust and ops-friendly services
● Build HTTP APIs with Nancy
● Expose events via feeds with Nancy
● Use OWIN middleware for plumbing

This book is written for C# developers. No previous experi­
ence with microservices required.

Christian Horsdal Gammelgaard is a Nancy committer and a
Microsoft MVP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/microservices-in-net-core

M A N N I N G $49.99 / Can $57.99 [INCLUDING eBOOK]

SEE INSERT

“A definite must-read for

anyone who works in

C#/.NET regularly.”
 —Nick McGinness, Direct Supply

“Elegant and convincing.

Developers will rethink their

application architecture.”
 —James McGinn

Bull Valley Software

“Brings together two

modern technologies

and delves deeply

into the code.”
 —Andy Kirsch

Concur Technologies

“An extremely approachable
book that tackles a

complex topic.” —Shahid Iqbal
Head For Cloud

www.manning.com/books/microservices-in-net-core

